Taipei Medical University Makes New Breakthrough in AI Medicine: Screening of Cancer Risks through Blood Samples Becomes Possible

Source: College of Medical Science and Technology

Published on 2020-08-24

An international research team led by Taipei Medical University employed artificial intelligence (AI) in the identifying of high cancer risk groups through blood data obtained from general health examinations.

The study was published on Scientific Reports, a journal published by Nature Research, on March 16, 2020.

This research, said Shabbir Syed Abdul, an associate professor at the Graduate Institute of Biomedical Informatics of Taipei Medical University, had been mainly conducted through AI, employing machine learning algorithms in the screening of cell population data (CPD) for hematologic malignancies. The research team collected a total of 882 hematology-oncology cases from Konkuk University Medical Center, Seoul, South Korea, among which 457 cases were of hematologic malignancies and 425 cases were of hematologic non-malignancies. Then seven models, including SGD, SVM, ANN, linear model, and logistic regression, were employed in AI learning. AI was further used to screen the data obtained from the blood samples collected from the hematology-oncology case subjects; the highest diagnosis rate of 93.5% was achieved by ANN.

Associate Professor Shabbir Syed Abdul from India has successfully acquired the Alien Permanent Resident Card of Taiwan, the “Plum Blossom Card” in 2017 in recognition of his outstanding research performance

The study has been jointly participated by South Korea, Slovenia, and Saudi Arabia. Associate Professor Shabbir Syed Abdul explained that as blood cancer is harder to diagnose than other cancers and usually requires the combination of blood smear and bone marrow smear examinations, many cancer patients are often diagnosed when the cancer had already progressed to the middle or advanced stages, resulting in missed optimal treatment timings. The new screening method can facilitate early risk detection through blood tests in routine health examinations of patients and timely responses, demonstrating promising research results.

 Did you know?

The results of the study will enable medical facilities to detect the risk levels of the future development of hematologic malignancies, such as lymphoma and blood cancer, through blood test data and AI analysis without the requirement of additional examinations, reducing costs of human resources, medical expenses, time, etc. Moreover, as early diagnoses and treatments can be achieved, the effects on the lowering of cancer mortality rates are highly anticipated.

This article is simultaneously available on QS WOWNews.

Taipei Medical University Hospital announces Contact-Free Connected Healthcare Platform

In response to COVID-19, Taipei Medical University Hospital has joined hands with the Industrial Technology Research Institute’s (ITRI) Service Systems Technology Center, Radica Health, Tranwo Technology Corp., Microsoft Taiwan, Acer, and other industry and academic organizations to announce the groundbreaking Contact-Free Connected Health Care Platform.

TMU holds 2020 Taiwan Experience Education Program

The Taiwan Experience Education Program (TEEP) is a full-year, open-enrollment laboratory internship program. TMU received more funds from the Ministry of Education for the 2020 TEEP than any school in the country. For 2020, TMU TEEP will include 9 internship programs.

TMU Outstanding International Alumni-Esti Nurwanti

The Multi-disciplinary Training Provided by Taipei Medical University was a Big Help.—Dr. Esti Nurwanti

Taipei Medical University alumni fight side by side against the COVID-19 pandemic

The COVID-19 outbreak has substantially changed everyone’s life. While the fight is still ongoing, we would like to take a moment to pay tribute to TMU alumni who have played significant roles in leading Taiwan’s response to COVID-19.

TMU Study Abroad Info Session

Download the slides for getting more information about the study abroad opportunities in TMU